Mining Message Flows using Recurrent Neural Networks for System-on-Chip Designs

29 Apr 2020  ·  Yuting Cao, Parijat Mukherjee, Mahesh Ketkar, Jin Yang, Hao Zheng ·

Comprehensive specifications are essential for various activities across the entire validation continuum for system-on-chip (SoC) designs. However, specifications are often ambiguous, incomplete, or even contain inconsistencies or errors. This paper addresses this problem by developing a specification mining approach that automatically extracts sequential patterns from SoC transaction-level traces such that the mined patterns collectively characterize system-level specifications for SoC designs. This approach exploits long short-term memory (LSTM) networks trained with the collected SoC execution traces to capture sequential dependencies among various communication events. Then, a novel algorithm is developed to efficiently extract sequential patterns on system-level communications from the trained LSTM models. Several trace processing techniques are also proposed to enhance the mining performance. We evaluate the proposed approach on simulation traces of a non-trivial multi-core SoC prototype. Initial results show that the proposed approach is capable of extracting various patterns on system-level specifications from the highly concurrent SoC execution traces.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods