Mining self-similarity: Label super-resolution with epitomic representations

ECCV 2020 Kolya MalkinAnthony OrtizCaleb RobinsonNebojsa Jojic

We show that simple patch-based models, such as epitomes, can have superior performance to the current state of the art in semantic segmentation and label super-resolution, which uses deep convolutional neural networks. We derive a new training algorithm for epitomes which allows, for the first time, learning from very large data sets and derive a label super-resolution algorithm as a statistical inference algorithm over epitomic representations... (read more)

PDF Abstract ECCV 2020 PDF ECCV 2020 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet