Mining Truck Platooning Patterns Through Massive Trajectory Data

11 Oct 2020  ·  Xiaolei Ma, Enze Huo, Haiyang Yu, Honghai Li ·

Truck platooning refers to a series of trucks driving in close proximity via communication technologies, and it is considered one of the most implementable systems of connected and automated vehicles, bringing huge energy savings and safety improvements. Properly planning platoons and evaluating the potential of truck platooning are crucial to trucking companies and transportation authorities... This study proposes a series of data mining approaches to learn spontaneous truck platooning patterns from massive trajectories. An enhanced map matching algorithm is developed to identify truck headings by using digital map data, followed by an adaptive spatial clustering algorithm to detect instantaneous co-moving truck sets. These sets are then aggregated to find the network-wide maximum platoon duration and size through frequent itemset mining for computational efficiency. We leverage real GPS data collected from truck fleeting systems in Liaoning Province, China, to evaluate platooning performance and successfully extract spatiotemporal platooning patterns. Results show that approximately 36% spontaneous truck platoons can be coordinated by speed adjustment without changing routes and schedules. The average platooning distance and duration ratios for these platooned trucks are 9.6% and 9.9%, respectively, leading to a 2.8% reduction in total fuel consumption. We also distinguish the optimal platooning periods and space headways for national freeways and trunk roads, and prioritize the road segments with high possibilities of truck platooning. The derived results are reproducible, providing useful policy implications and operational strategies for large-scale truck platoon planning and roadside infrastructure construction. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods