Mintaka: A Complex, Natural, and Multilingual Dataset for End-to-End Question Answering

COLING 2022  ·  Priyanka Sen, Alham Fikri Aji, Amir Saffari ·

We introduce Mintaka, a complex, natural, and multilingual dataset designed for experimenting with end-to-end question-answering models. Mintaka is composed of 20,000 question-answer pairs collected in English, annotated with Wikidata entities, and translated into Arabic, French, German, Hindi, Italian, Japanese, Portuguese, and Spanish for a total of 180,000 samples. Mintaka includes 8 types of complex questions, including superlative, intersection, and multi-hop questions, which were naturally elicited from crowd workers. We run baselines over Mintaka, the best of which achieves 38% hits@1 in English and 31% hits@1 multilingually, showing that existing models have room for improvement. We release Mintaka at

PDF Abstract COLING 2022 PDF COLING 2022 Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here