Mirror3D: Depth Refinement for Mirror Surfaces

Despite recent progress in depth sensing and 3D reconstruction, mirror surfaces are a significant source of errors. To address this problem, we create the Mirror3D dataset: a 3D mirror plane dataset based on three RGBD datasets (Matterport3D, NYUv2 and ScanNet) containing 7,011 mirror instance masks and 3D planes. We then develop Mirror3DNet: a module that refines raw sensor depth or estimated depth to correct errors on mirror surfaces. Our key idea is to estimate the 3D mirror plane based on RGB input and surrounding depth context, and use this estimate to directly regress mirror surface depth. Our experiments show that Mirror3DNet significantly mitigates errors from a variety of input depth data, including raw sensor depth and depth estimation or completion methods.

PDF Abstract CVPR 2021 PDF CVPR 2021 Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here