Improving Scheduled Sampling with Elastic Weight Consolidation for Neural Machine Translation

13 Sep 2021  ·  Michalis Korakakis, Andreas Vlachos ·

Despite strong performance in many sequence-to-sequence tasks, autoregressive models trained with maximum likelihood estimation suffer from exposure bias, i.e. the discrepancy between the ground-truth prefixes used during training and the model-generated prefixes used at inference time. Scheduled sampling is a simple and empirically successful approach which addresses this issue by incorporating model-generated prefixes into training. However, it has been argued that it is an inconsistent training objective leading to models ignoring the prefixes altogether. In this paper, we conduct systematic experiments and find that scheduled sampling, while it ameliorates exposure bias by increasing model reliance on the input sequence, worsens performance when the prefix at inference time is correct, a form of catastrophic forgetting. We propose to use Elastic Weight Consolidation to better balance mitigating exposure bias with retaining performance. Experiments on four IWSLT'14 and WMT'14 translation datasets demonstrate that our approach alleviates catastrophic forgetting and significantly outperforms maximum likelihood estimation and scheduled sampling baselines.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here