Mitigating Evasion Attacks to Deep Neural Networks via Region-based Classification

17 Sep 2017  ·  Xiaoyu Cao, Neil Zhenqiang Gong ·

Deep neural networks (DNNs) have transformed several artificial intelligence research areas including computer vision, speech recognition, and natural language processing. However, recent studies demonstrated that DNNs are vulnerable to adversarial manipulations at testing time. Specifically, suppose we have a testing example, whose label can be correctly predicted by a DNN classifier. An attacker can add a small carefully crafted noise to the testing example such that the DNN classifier predicts an incorrect label, where the crafted testing example is called adversarial example. Such attacks are called evasion attacks. Evasion attacks are one of the biggest challenges for deploying DNNs in safety and security critical applications such as self-driving cars. In this work, we develop new methods to defend against evasion attacks. Our key observation is that adversarial examples are close to the classification boundary. Therefore, we propose region-based classification to be robust to adversarial examples. For a benign/adversarial testing example, we ensemble information in a hypercube centered at the example to predict its label. In contrast, traditional classifiers are point-based classification, i.e., given a testing example, the classifier predicts its label based on the testing example alone. Our evaluation results on MNIST and CIFAR-10 datasets demonstrate that our region-based classification can significantly mitigate evasion attacks without sacrificing classification accuracy on benign examples. Specifically, our region-based classification achieves the same classification accuracy on testing benign examples as point-based classification, but our region-based classification is significantly more robust than point-based classification to various evasion attacks.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here