Unbiased Collaborative Filtering with Fair Sampling

19 Feb 2025  ·  Jiahao Liu, Dongsheng Li, Hansu Gu, Peng Zhang, Tun Lu, Li Shang, Ning Gu ·

Recommender systems leverage extensive user interaction data to model preferences; however, directly modeling these data may introduce biases that disproportionately favor popular items. In this paper, we demonstrate that popularity bias arises from the influence of propensity factors during training. Building on this insight, we propose a fair sampling (FS) method that ensures each user and each item has an equal likelihood of being selected as both positive and negative instances, thereby mitigating the influence of propensity factors. The proposed FS method does not require estimating propensity scores, thus avoiding the risk of failing to fully eliminate popularity bias caused by estimation inaccuracies. Comprehensive experiments demonstrate that the proposed FS method achieves state-of-the-art performance in both point-wise and pair-wise recommendation tasks. The code implementation is available at https://github.com/jhliu0807/Fair-Sampling.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here