Mixed Linear Regression with Multiple Components

NeurIPS 2016 Kai ZhongPrateek JainInderjit S. Dhillon

In this paper, we study the mixed linear regression (MLR) problem, where the goal is to recover multiple underlying linear models from their unlabeled linear measurements. We propose a non-convex objective function which we show is {\em locally strongly convex} in the neighborhood of the ground truth... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper