MLFcGAN: Multi-level Feature Fusion based Conditional GAN for Underwater Image Color Correction

13 Feb 2020Xiaodong LiuZhi GaoBen M. Chen

Color correction for underwater images has received increasing interests, due to its critical role in facilitating available mature vision algorithms for underwater scenarios. Inspired by the stunning success of deep convolutional neural networks (DCNNs) techniques in many vision tasks, especially the strength in extracting features in multiple scales, we propose a deep multi-scale feature fusion net based on the conditional generative adversarial network (GAN) for underwater image color correction... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet