MM-GNN: Mix-Moment Graph Neural Network towards Modeling Neighborhood Feature Distribution

15 Aug 2022  ·  Wendong Bi, Lun Du, Qiang Fu, Yanlin Wang, Shi Han, Dongmei Zhang ·

Graph Neural Networks (GNNs) have shown expressive performance on graph representation learning by aggregating information from neighbors. Recently, some studies have discussed the importance of modeling neighborhood distribution on the graph. However, most existing GNNs aggregate neighbors' features through single statistic (e.g., mean, max, sum), which loses the information related to neighbor's feature distribution and therefore degrades the model performance. In this paper, inspired by the method of moment in statistical theory, we propose to model neighbor's feature distribution with multi-order moments. We design a novel GNN model, namely Mix-Moment Graph Neural Network (MM-GNN), which includes a Multi-order Moment Embedding (MME) module and an Element-wise Attention-based Moment Adaptor module. MM-GNN first calculates the multi-order moments of the neighbors for each node as signatures, and then use an Element-wise Attention-based Moment Adaptor to assign larger weights to important moments for each node and update node representations. We conduct extensive experiments on 15 real-world graphs (including social networks, citation networks and web-page networks etc.) to evaluate our model, and the results demonstrate the superiority of MM-GNN over existing state-of-the-art models.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods