MMO: Meta Multi-Objectivization for Software Configuration Tuning

14 Dec 2021  ·  Tao Chen, Miqing Li ·

Software configuration tuning is essential for optimizing a given performance objective (e.g., minimizing latency). Yet, due to the software's intrinsically complex configuration landscape and expensive measurement, there has been a rather mild success, particularly in preventing the search from being trapped in local optima. To address this issue, in this paper we take a different perspective. Instead of focusing on improving the optimizer, we work on the level of optimization model and propose a meta multi-objectivization (MMO) model that considers an auxiliary performance objective (e.g., throughput in addition to latency). What makes this model unique is that we do not optimize the auxiliary performance objective, but rather use it to make similarly-performing while different configurations less comparable (i.e. Pareto nondominated to each other), thus preventing the search from being trapped in local optima. Importantly through a new normalization method we show how to effectively use the MMO model without worrying about its weight -- the only yet highly sensitive parameter that can affect its effectiveness. Experiments on 22 cases from 11 real-world software systems/environments confirm that our MMO model with the new normalization performs better than its state-of-the-art single-objective counterparts on 82% cases while achieving up to 2.09x speedup. For 67% of the cases, the new normalization also enables the MMO model to outperform the instance when using it with the normalization used in our prior FSE work under pre-tuned best weights, saving a great amount of resources which would be otherwise necessary to find a good weight. We also demonstrate that the MMO model with the new normalization can consolidate Flash, a recent model-based tuning tool, on 68% of the cases with 1.22x speedup in general.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here