MODEC: Multimodal Decomposable Models for Human Pose Estimation

We propose a multimodal, decomposable model for articulated human pose estimation in monocular images. A typical approach to this problem is to use a linear structured model, which struggles to capture the wide range of appearance present in realistic, unconstrained images... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Introduced in the Paper:

FLIC

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet