MoDeep: A Deep Learning Framework Using Motion Features for Human Pose Estimation

28 Sep 2014  ·  Arjun Jain, Jonathan Tompson, Yann Lecun, Christoph Bregler ·

In this work, we propose a novel and efficient method for articulated human pose estimation in videos using a convolutional network architecture, which incorporates both color and motion features. We propose a new human body pose dataset, FLIC-motion, that extends the FLIC dataset with additional motion features. We apply our architecture to this dataset and report significantly better performance than current state-of-the-art pose detection systems.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here