Model Architecture Adaption for Bayesian Neural Networks

9 Feb 2022  ·  Duo Wang, Yiren Zhao, Ilia Shumailov, Robert Mullins ·

Bayesian Neural Networks (BNNs) offer a mathematically grounded framework to quantify the uncertainty of model predictions but come with a prohibitive computation cost for both training and inference. In this work, we show a novel network architecture search (NAS) that optimizes BNNs for both accuracy and uncertainty while having a reduced inference latency. Different from canonical NAS that optimizes solely for in-distribution likelihood, the proposed scheme searches for the uncertainty performance using both in- and out-of-distribution data. Our method is able to search for the correct placement of Bayesian layer(s) in a network. In our experiments, the searched models show comparable uncertainty quantification ability and accuracy compared to the state-of-the-art (deep ensemble). In addition, the searched models use only a fraction of the runtime compared to many popular BNN baselines, reducing the inference runtime cost by $2.98 \times$ and $2.92 \times$ respectively on the CIFAR10 dataset when compared to MCDropout and deep ensemble.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here