Model-blind Video Denoising Via Frame-to-frame Training

Modeling the processing chain that has produced a video is a difficult reverse engineering task, even when the camera is available. This makes model based video processing a still more complex task. In this paper we propose a fully blind video denoising method, with two versions off-line and on-line. This is achieved by fine-tuning a pre-trained AWGN denoising network to the video with a novel frame-to-frame training strategy. Our denoiser can be used without knowledge of the origin of the video or burst and the post processing steps applied from the camera sensor. The on-line process only requires a couple of frames before achieving visually-pleasing results for a wide range of perturbations. It nonetheless reaches state of the art performance for standard Gaussian noise, and can be used off-line with still better performance.

PDF Abstract CVPR 2019 PDF CVPR 2019 Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here