Model Elicitation through Direct Questioning

24 Nov 2020  ·  Sachin Grover, David Smith, Subbarao Kambhampati ·

The future will be replete with scenarios where humans are robots will be working together in complex environments. Teammates interact, and the robot's interaction has to be about getting useful information about the human's (teammate's) model. There are many challenges before a robot can interact, such as incorporating the structural differences in the human's model, ensuring simpler responses, etc. In this paper, we investigate how a robot can interact to localize the human model from a set of models. We show how to generate questions to refine the robot's understanding of the teammate's model. We evaluate the method in various planning domains. The evaluation shows that these questions can be generated offline, and can help refine the model through simple answers.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here