Model Exploration with Cost-Aware Learning

9 Oct 2020  ·  Namid Stillman, Igor Balazs, Sabine Hauert ·

We present an extension to active learning routines in which non-constant costs are explicitly considered. This work considers both known and unknown costs and introduces the term \epsilon-frugal for learners that do not only consider minimizing total costs but are also able to explore high cost regions of the sample space. We demonstrate our extension on a well-known machine learning dataset and find that out \epsilon-frugal learners outperform both learners with known costs and random sampling.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here