Model-free Reinforcement Learning for Robust Locomotion using Demonstrations from Trajectory Optimization

14 Jul 2021  ·  Miroslav Bogdanovic, Majid Khadiv, Ludovic Righetti ·

We present a general, two-stage reinforcement learning approach to create robust policies that can be deployed on real robots without any additional training using a single demonstration generated by trajectory optimization. The demonstration is used in the first stage as a starting point to facilitate initial exploration. In the second stage, the relevant task reward is optimized directly and a policy robust to environment uncertainties is computed. We demonstrate and examine in detail the performance and robustness of our approach on highly dynamic hopping and bounding tasks on a quadruped robot.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here