Minimizing Robot Navigation-Graph For Position-Based Predictability By Humans

28 Oct 2020  ·  Sriram Gopalakrishnan, Subbarao Kambhampati ·

In situations where humans and robots are moving in the same space whilst performing their own tasks, predictable paths taken by mobile robots can not only make the environment feel safer, but humans can also help with the navigation in the space by avoiding path conflicts or not blocking the way. So predictable paths become vital. The cognitive effort for the human to predict the robot's path becomes untenable as the number of robots increases. As the number of humans increase, it also makes it harder for the robots to move while considering the motion of multiple humans. Additionally, if new people are entering the space -- like in restaurants, banks, and hospitals -- they would have less familiarity with the trajectories typically taken by the robots; this further increases the needs for predictable robot motion along paths. With this in mind, we propose to minimize the navigation-graph of the robot for position-based predictability, which is predictability from just the current position of the robot. This is important since the human cannot be expected to keep track of the goals and prior actions of the robot in addition to doing their own tasks. In this paper, we define measures for position-based predictability, then present and evaluate a hill-climbing algorithm to minimize the navigation-graph (directed graph) of robot motion. This is followed by the results of our human-subject experiments which support our proposed methodology.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here