Modeling adult skeletal stem cell response to laser-machined topographies through deep learning

The response of adult human bone marrow stromal stem cells to surface topographies generated through femtosecond laser machining can be predicted by a deep neural network. The network is capable of predicting cell response to a statistically significant level, including positioning predictions with a probability P < 0.001, and therefore can be used as a model to determine the minimum line separation required for cell alignment, with implications for tissue structure development and tissue engineering... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper