Modeling Ambient Scene Dynamics for Free-view Synthesis

13 Jun 2024  ·  Meng-Li Shih, Jia-Bin Huang, Changil Kim, Rajvi Shah, Johannes Kopf, Chen Gao ·

We introduce a novel method for dynamic free-view synthesis of an ambient scenes from a monocular capture bringing a immersive quality to the viewing experience. Our method builds upon the recent advancements in 3D Gaussian Splatting (3DGS) that can faithfully reconstruct complex static scenes. Previous attempts to extend 3DGS to represent dynamics have been confined to bounded scenes or require multi-camera captures, and often fail to generalize to unseen motions, limiting their practical application. Our approach overcomes these constraints by leveraging the periodicity of ambient motions to learn the motion trajectory model, coupled with careful regularization. We also propose important practical strategies to improve the visual quality of the baseline 3DGS static reconstructions and to improve memory efficiency critical for GPU-memory intensive learning. We demonstrate high-quality photorealistic novel view synthesis of several ambient natural scenes with intricate textures and fine structural elements.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods