Modeling Human Sentence Processing with Left-Corner Recurrent Neural Network Grammars

EMNLP 2021  ·  Ryo Yoshida, Hiroshi Noji, Yohei Oseki ·

In computational linguistics, it has been shown that hierarchical structures make language models (LMs) more human-like. However, the previous literature has been agnostic about a parsing strategy of the hierarchical models. In this paper, we investigated whether hierarchical structures make LMs more human-like, and if so, which parsing strategy is most cognitively plausible. In order to address this question, we evaluated three LMs against human reading times in Japanese with head-final left-branching structures: Long Short-Term Memory (LSTM) as a sequential model and Recurrent Neural Network Grammars (RNNGs) with top-down and left-corner parsing strategies as hierarchical models. Our computational modeling demonstrated that left-corner RNNGs outperformed top-down RNNGs and LSTM, suggesting that hierarchical and left-corner architectures are more cognitively plausible than top-down or sequential architectures. In addition, the relationships between the cognitive plausibility and (i) perplexity, (ii) parsing, and (iii) beam size will also be discussed.

PDF Abstract EMNLP 2021 PDF EMNLP 2021 Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.