Modeling Longitudinal Data on Riemannian Manifolds

12 Dec 2018Xiongtao DaiZhenhua LinHans-Georg Müller

When considering functional principal component analysis for sparsely observed longitudinal data that take values on a nonlinear manifold, a major challenge is how to handle the sparse and irregular observations that are commonly encountered in longitudinal studies. Addressing this challenge, we provide theory and implementations for a manifold version of the principal analysis by conditional expectation (PACE) procedure that produces representations intrinsic to the manifold, extending a well-established version of functional principal component analysis targeting sparsely sampled longitudinal data in linear spaces... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet