Modeling of the Latent Embedding of Music using Deep Neural Network

While both the data volume and heterogeneity of the digital music content is huge, it has become increasingly important and convenient to build a recommendation or search system to facilitate surfacing these content to the user or consumer community. Most of the recommendation models fall into two primary species, collaborative filtering based and content based approaches. Variants of instantiations of collaborative filtering approach suffer from the common issues of so called "cold start" and "long tail" problems where there is not much user interaction data to reveal user opinions or affinities on the content and also the distortion towards the popular content. Content-based approaches are sometimes limited by the richness of the available content data resulting in a heavily biased and coarse recommendation result. In recent years, the deep neural network has enjoyed a great success in large-scale image and video recognitions. In this paper, we propose and experiment using deep convolutional neural network to imitate how human brain processes hierarchical structures in the auditory signals, such as music, speech, etc., at various timescales. This approach can be used to discover the latent factor models of the music based upon acoustic hyper-images that are extracted from the raw audio waves of music. These latent embeddings can be used either as features to feed to subsequent models, such as collaborative filtering, or to build similarity metrics between songs, or to classify music based on the labels for training such as genre, mood, sentiment, etc.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here