Modeling Social Annotation Data with Content Relevance using a Topic Model

We propose a probabilistic topic model for analyzing and extracting content-related annotations from noisy annotated discrete data such as web pages stored in social bookmarking services. In these services, since users can attach annotations freely, some annotations do not describe the semantics of the content, thus they are noisy, i.e. not content-related... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet