IsarStep: a Benchmark for High-level Mathematical Reasoning

ICLR 2021  ·  Wenda Li, Lei Yu, Yuhuai Wu, Lawrence C. Paulson ·

A well-defined benchmark is essential for measuring and accelerating research progress of machine learning models. In this paper, we present a benchmark for high-level mathematical reasoning and study the reasoning capabilities of neural sequence-to-sequence models. We build a non-synthetic dataset from the largest repository of proofs written by human experts in a theorem prover. The dataset has a broad coverage of undergraduate and research-level mathematical and computer science theorems. In our defined task, a model is required to fill in a missing intermediate proposition given surrounding proofs. This task provides a starting point for the long-term goal of having machines generate human-readable proofs automatically. Our experiments and analysis reveal that while the task is challenging, neural models can capture non-trivial mathematical reasoning. We further design a hierarchical transformer that outperforms the transformer baseline.

PDF Abstract ICLR 2021 PDF ICLR 2021 Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.