Modular Deep Probabilistic Programming

ICLR 2019  ·  Zhenwen Dai, Eric Meissner, Neil D. Lawrence ·

Modularity is a key feature of deep learning libraries but has not been fully exploited for probabilistic programming. We propose to improve modularity of probabilistic programming language by offering not only plain probabilistic distributions but also sophisticated probabilistic model such as Bayesian non-parametric models as fundamental building blocks. We demonstrate this idea by presenting a modular probabilistic programming language MXFusion, which includes a new type of re-usable building blocks, called probabilistic modules. A probabilistic module consists of a set of random variables with associated probabilistic distributions and dedicated inference methods. Under the framework of variational inference, the pre-specified inference methods of individual probabilistic modules can be transparently used for inference of the whole probabilistic model. We demonstrate the power and convenience of probabilistic modules in MXFusion with various examples of Gaussian process models, which are evaluated with experiments on real data.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.