Modularized Morphing of Neural Networks

12 Jan 2017  ·  Tao Wei, Changhu Wang, Chang Wen Chen ·

In this work we study the problem of network morphism, an effective learning scheme to morph a well-trained neural network to a new one with the network function completely preserved. Different from existing work where basic morphing types on the layer level were addressed, we target at the central problem of network morphism at a higher level, i.e., how a convolutional layer can be morphed into an arbitrary module of a neural network. To simplify the representation of a network, we abstract a module as a graph with blobs as vertices and convolutional layers as edges, based on which the morphing process is able to be formulated as a graph transformation problem. Two atomic morphing operations are introduced to compose the graphs, based on which modules are classified into two families, i.e., simple morphable modules and complex modules. We present practical morphing solutions for both of these two families, and prove that any reasonable module can be morphed from a single convolutional layer. Extensive experiments have been conducted based on the state-of-the-art ResNet on benchmark datasets, and the effectiveness of the proposed solution has been verified.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods