MOF-BC: A Memory Optimized and Flexible BlockChain for Large Scale Networks

13 Jan 2018  ·  Ali Dorri, Salil S. Kanhere, Raja Jurdak ·

BlockChain (BC) immutability ensures BC resilience against modification or removal of the stored data. In large scale networks like the Internet of Things (IoT), however, this feature significantly increases BC storage size and raises privacy challenges. In this paper, we propose a Memory Optimized and Flexible BC (MOF-BC) that enables the IoT users and service providers to remove or summarize their transactions and age their data and to exercise the "right to be forgotten". To increase privacy, a user may employ multiple keys for different transactions. To allow for the removal of stored transactions, all keys would need to be stored which complicates key management and storage. MOF-BC introduces the notion of a Generator Verifier (GV) which is a signed hash of a Generator Verifier Secret (GVS). The GV changes for each transaction to provide privacy yet is signed by a unique key, thus minimizing the information that needs to be stored. A flexible transaction fee model and a reward mechanism is proposed to incentivize users to participate in optimizing memory consumption. Qualitative security and privacy analysis demonstrates that MOF-BC is resilient against several security attacks. Evaluation results show that MOF-BC decreases BC memory consumption by up to 25\% and the user cost by more than two orders of magnitude compared to conventional BC instantiations.

PDF Abstract

Categories


Cryptography and Security

Datasets


  Add Datasets introduced or used in this paper