CaPE: Contrastive Parameter Ensembling for Reducing Hallucination in Abstractive Summarization

Hallucination is a known issue for neural abstractive summarization models. Recent work suggests that the degree of hallucination may depend on errors in the training data. In this work, we propose a new method called Contrastive Parameter Ensembling (CaPE) to use training data more effectively, utilizing variations in noise in training samples to reduce hallucination. We first select clean and noisy subsets from the training data using different automatic factual metrics. Then, we fine-tune a base summarization model, which is trained on all training samples, on the clean (noisy) subset to obtain an \textit{expert} (\textit{anti-expert}) model. Finally, we adjust the parameters of base model by the difference between parameters of the \textit{expert} and \textit{anti-expert} models, steering the base model towards the \textit{expert} model and away from the \textit{anti-expert} model. Experimental results show that CaPE improves performance across different automatic factual metrics and human evaluation, with the maximum improvement of 16.69\% and 15.78\% on summary-level dependency-arc entailment accuracy for the XSUM and CNN/DM datasets. The improvement in factual performance does not degrade the performance on other metrics of informativeness such as ROUGE.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods