Momentum-Based Policy Gradient Methods

ICML 2020  ·  Feihu Huang, Shangqian Gao, Jian Pei, Heng Huang ·

In the paper, we propose a class of efficient momentum-based policy gradient methods for the model-free reinforcement learning, which use adaptive learning rates and do not require any large batches. Specifically, we propose a fast important-sampling momentum-based policy gradient (IS-MBPG) method based on a new momentum-based variance reduced technique and the importance sampling technique. We also propose a fast Hessian-aided momentum-based policy gradient (HA-MBPG) method based on the momentum-based variance reduced technique and the Hessian-aided technique. Moreover, we prove that both the IS-MBPG and HA-MBPG methods reach the best known sample complexity of $O(\epsilon^{-3})$ for finding an $\epsilon$-stationary point of the non-concave performance function, which only require one trajectory at each iteration. In particular, we present a non-adaptive version of IS-MBPG method, i.e., IS-MBPG*, which also reaches the best known sample complexity of $O(\epsilon^{-3})$ without any large batches. In the experiments, we apply four benchmark tasks to demonstrate the effectiveness of our algorithms.

PDF Abstract ICML 2020 PDF

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here