Momentum Gradient-based Untargeted Attack on Hypergraph Neural Networks

24 Oct 2023  ·  Yang Chen, Stjepan Picek, Zhonglin Ye, Zhaoyang Wang, Haixing Zhao ·

Hypergraph Neural Networks (HGNNs) have been successfully applied in various hypergraph-related tasks due to their excellent higher-order representation capabilities. Recent works have shown that deep learning models are vulnerable to adversarial attacks. Most studies on graph adversarial attacks have focused on Graph Neural Networks (GNNs), and the study of adversarial attacks on HGNNs remains largely unexplored. In this paper, we try to reduce this gap. We design a new HGNNs attack model for the untargeted attack, namely MGHGA, which focuses on modifying node features. We consider the process of HGNNs training and use a surrogate model to implement the attack before hypergraph modeling. Specifically, MGHGA consists of two parts: feature selection and feature modification. We use a momentum gradient mechanism to choose the attack node features in the feature selection module. In the feature modification module, we use two feature generation approaches (direct modification and sign gradient) to enable MGHGA to be employed on discrete and continuous datasets. We conduct extensive experiments on five benchmark datasets to validate the attack performance of MGHGA in the node and the visual object classification tasks. The results show that MGHGA improves performance by an average of 2% compared to the than the baselines.

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.