MOORe: Model-based Offline-to-Online Reinforcement Learning

25 Jan 2022  ·  Yihuan Mao, Chao Wang, Bin Wang, Chongjie Zhang ·

With the success of offline reinforcement learning (RL), offline trained RL policies have the potential to be further improved when deployed online. A smooth transfer of the policy matters in safe real-world deployment. Besides, fast adaptation of the policy plays a vital role in practical online performance improvement. To tackle these challenges, we propose a simple yet efficient algorithm, Model-based Offline-to-Online Reinforcement learning (MOORe), which employs a prioritized sampling scheme that can dynamically adjust the offline and online data for smooth and efficient online adaptation of the policy. We provide a theoretical foundation for our algorithms design. Experiment results on the D4RL benchmark show that our algorithm smoothly transfers from offline to online stages while enabling sample-efficient online adaption, and also significantly outperforms existing methods.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here