Morphology-aware Word-Segmentation in Dialectal Arabic Adaptation of Neural Machine Translation

WS 2019  ·  Ahmed Tawfik, Mahitab Emam, Khaled Essam, Robert Nabil, Hany Hassan ·

Parallel corpora available for building machine translation (MT) models for dialectal Arabic (DA) are rather limited. The scarcity of resources has prompted the use of Modern Standard Arabic (MSA) abundant resources to complement the limited dialectal resource... However, dialectal clitics often differ between MSA and DA. This paper compares morphology-aware DA word segmentation to other word segmentation approaches like Byte Pair Encoding (BPE) and Sub-word Regularization (SR). A set of experiments conducted on Egyptian Arabic (EA), Levantine Arabic (LA), and Gulf Arabic (GA) show that a sufficiently accurate morphology-aware segmentation used in conjunction with BPE outperforms the other word segmentation approaches. read more

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.