Mortal Multi-Armed Bandits

We formulate and study a new variant of the $k$-armed bandit problem, motivated by e-commerce applications. In our model, arms have (stochastic) lifetime after which they expire. In this setting an algorithm needs to continuously explore new arms, in contrast to the standard $k$-armed bandit model in which arms are available indefinitely and exploration is reduced once an optimal arm is identified with near-certainty. The main motivation for our setting is online-advertising, where ads have limited lifetime due to, for example, the nature of their content and their campaign budget. An algorithm needs to choose among a large collection of ads, more than can be fully explored within the ads' lifetime. We present an optimal algorithm for the state-aware (deterministic reward function) case, and build on this technique to obtain an algorithm for the state-oblivious (stochastic reward function) case. Empirical studies on various reward distributions, including one derived from a real-world ad serving application, show that the proposed algorithms significantly outperform the standard multi-armed bandit approaches applied to these settings.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here