MOSI: Multimodal Corpus of Sentiment Intensity and Subjectivity Analysis in Online Opinion Videos

20 Jun 2016  ·  Amir Zadeh, Rowan Zellers, Eli Pincus, Louis-Philippe Morency ·

People are sharing their opinions, stories and reviews through online video sharing websites every day. Studying sentiment and subjectivity in these opinion videos is experiencing a growing attention from academia and industry. While sentiment analysis has been successful for text, it is an understudied research question for videos and multimedia content. The biggest setbacks for studies in this direction are lack of a proper dataset, methodology, baselines and statistical analysis of how information from different modality sources relate to each other. This paper introduces to the scientific community the first opinion-level annotated corpus of sentiment and subjectivity analysis in online videos called Multimodal Opinion-level Sentiment Intensity dataset (MOSI). The dataset is rigorously annotated with labels for subjectivity, sentiment intensity, per-frame and per-opinion annotated visual features, and per-milliseconds annotated audio features. Furthermore, we present baselines for future studies in this direction as well as a new multimodal fusion approach that jointly models spoken words and visual gestures.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here