Motion Prediction via Joint Dependency Modeling in Phase Space

7 Jan 2022  ·  Pengxiang Su, Zhenguang Liu, Shuang Wu, Lei Zhu, Yifang Yin, Xuanjing Shen ·

Motion prediction is a classic problem in computer vision, which aims at forecasting future motion given the observed pose sequence. Various deep learning models have been proposed, achieving state-of-the-art performance on motion prediction. However, existing methods typically focus on modeling temporal dynamics in the pose space. Unfortunately, the complicated and high dimensionality nature of human motion brings inherent challenges for dynamic context capturing. Therefore, we move away from the conventional pose based representation and present a novel approach employing a phase space trajectory representation of individual joints. Moreover, current methods tend to only consider the dependencies between physically connected joints. In this paper, we introduce a novel convolutional neural model to effectively leverage explicit prior knowledge of motion anatomy, and simultaneously capture both spatial and temporal information of joint trajectory dynamics. We then propose a global optimization module that learns the implicit relationships between individual joint features. Empirically, our method is evaluated on large-scale 3D human motion benchmark datasets (i.e., Human3.6M, CMU MoCap). These results demonstrate that our method sets the new state-of-the-art on the benchmark datasets. Our code will be available at https://github.com/Pose-Group/TEID.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here