MPCViT: Searching for Accurate and Efficient MPC-Friendly Vision Transformer with Heterogeneous Attention

25 Nov 2022  ·  Wenxuan Zeng, Meng Li, Wenjie Xiong, Tong Tong, Wenjie Lu, Jin Tan, Runsheng Wang, Ru Huang ·

Secure multi-party computation (MPC) enables computation directly on encrypted data and protects both data and model privacy in deep learning inference. However, existing neural network architectures, including Vision Transformers (ViTs), are not designed or optimized for MPC and incur significant latency overhead. We observe Softmax accounts for the major latency bottleneck due to a high communication complexity, but can be selectively replaced or linearized without compromising the model accuracy. Hence, in this paper, we propose an MPC-friendly ViT, dubbed MPCViT, to enable accurate yet efficient ViT inference in MPC. Based on a systematic latency and accuracy evaluation of the Softmax attention and other attention variants, we propose a heterogeneous attention optimization space. We also develop a simple yet effective MPC-aware neural architecture search algorithm for fast Pareto optimization. To further boost the inference efficiency, we propose MPCViT+, to jointly optimize the Softmax attention and other network components, including GeLU, matrix multiplication, etc. With extensive experiments, we demonstrate that MPCViT achieves 1.9%, 1.3% and 4.6% higher accuracy with 6.2x, 2.9x and 1.9x latency reduction compared with baseline ViT, MPCFormer and THE-X on the Tiny-ImageNet dataset, respectively. MPCViT+ further achieves 1.2x latency reduction on CIFAR-100 dataset and reaches a better Pareto front compared with MPCViT.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.