MS*: A New Exact Algorithm for Multi-agent Simultaneous Multi-goal Sequencing and Path Finding

18 Mar 2021  ·  Zhongqiang Ren, Sivakumar Rathinam, Howie Choset ·

In multi-agent applications such as surveillance and logistics, fleets of mobile agents are often expected to coordinate and safely visit a large number of goal locations as efficiently as possible. The multi-agent planning problem in these applications involves allocating and sequencing goals for each agent while simultaneously producing conflict-free paths for the agents. In this article, we introduce a new algorithm called MS* which computes an optimal solution for this multi-agent problem by fusing and advancing state of the art solvers for multi-agent path finding (MAPF) and multiple travelling salesman problem (mTSP). MS* leverages our prior subdimensional expansion approach for MAPF and embeds the mTSP solvers to optimally allocate and sequence goals for agents. Numerical results show that our new algorithm can solve the multi-agent problem with 20 agents and 50 goals in a minute of CPU time on a standard laptop.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here