MSC: A Dataset for Macro-Management in StarCraft II

9 Oct 2017  ·  Huikai Wu, Junge Zhang, Kaiqi Huang ·

Macro-management is an important problem in StarCraft, which has been studied for a long time. Various datasets together with assorted methods have been proposed in the last few years. But these datasets have some defects for boosting the academic and industrial research: 1) There're neither standard preprocessing, parsing and feature extraction procedures nor predefined training, validation and test set in some datasets. 2) Some datasets are only specified for certain tasks in macro-management. 3) Some datasets are either too small or don't have enough labeled data for modern machine learning algorithms such as deep neural networks. So most previous methods are trained with various features, evaluated on different test sets from the same or different datasets, making it difficult to be compared directly. To boost the research of macro-management in StarCraft, we release a new dataset MSC based on the platform SC2LE. MSC consists of well-designed feature vectors, pre-defined high-level actions and final result of each match. We also split MSC into training, validation and test set for the convenience of evaluation and comparison. Besides the dataset, we propose a baseline model and present initial baseline results for global state evaluation and build order prediction, which are two of the key tasks in macro-management. Various downstream tasks and analyses of the dataset are also described for the sake of research on macro-management in StarCraft II. Homepage:

PDF Abstract


Introduced in the Paper:


Used in the Paper:


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here