MSNet: A Multilevel Instance Segmentation Network for Natural Disaster Damage Assessment in Aerial Videos

30 Jun 2020  ·  Xiaoyu Zhu, Junwei Liang, Alexander Hauptmann ·

In this paper, we study the problem of efficiently assessing building damage after natural disasters like hurricanes, floods or fires, through aerial video analysis. We make two main contributions. The first contribution is a new dataset, consisting of user-generated aerial videos from social media with annotations of instance-level building damage masks. This provides the first benchmark for quantitative evaluation of models to assess building damage using aerial videos. The second contribution is a new model, namely MSNet, which contains novel region proposal network designs and an unsupervised score refinement network for confidence score calibration in both bounding box and mask branches. We show that our model achieves state-of-the-art results compared to previous methods in our dataset. We will release our data, models and code.

PDF Abstract


Introduced in the Paper:


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here