MTVQA: Benchmarking Multilingual Text-Centric Visual Question Answering

Text-Centric Visual Question Answering (TEC-VQA) in its proper format not only facilitates human-machine interaction in text-centric visual environments but also serves as a de facto gold proxy to evaluate AI models in the domain of text-centric scene understanding. Nonetheless, most existing TEC-VQA benchmarks have focused on high-resource languages like English and Chinese. Despite pioneering works to expand multilingual QA pairs in non-text-centric VQA datasets through translation engines, the translation-based protocol encounters a substantial "visual-textual misalignment" problem when applied to TEC-VQA. Specifically, it prioritizes the text in question-answer pairs while disregarding the visual text present in images. Moreover, it fails to address complexities related to nuanced meaning, contextual distortion, language bias, and question-type diversity. In this work, we tackle multilingual TEC-VQA by introducing MTVQA, the first benchmark featuring high-quality human expert annotations across 9 diverse languages, consisting of 6,778 question-answer pairs across 2,116 images. Further, by comprehensively evaluating numerous state-of-the-art Multimodal Large Language Models (MLLMs), including GPT-4o, GPT-4V, Claude3, and Gemini, on the MTVQA dataset, it is evident that there is still a large room for performance improvement, underscoring the value of MTVQA. Additionally, we supply multilingual training data within the MTVQA dataset, demonstrating that straightforward fine-tuning with this data can substantially enhance multilingual TEC-VQA performance. We aspire that MTVQA will offer the research community fresh insights and stimulate further exploration in multilingual visual text comprehension. The project homepage is available at https://bytedance.github.io/MTVQA/.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here