MultAV: Multiplicative Adversarial Videos

17 Sep 2020  ·  Shao-Yuan Lo, Vishal M. Patel ·

The majority of adversarial machine learning research focuses on additive threat models, which add adversarial perturbation to input data. On the other hand, unlike image recognition problems, only a handful of threat models have been explored in the video domain... In this paper, we propose a novel adversarial attack against video recognition models, Multiplicative Adversarial Videos (MultAV), which imposes perturbation on video data by multiplication. MultAV has different noise distributions to the additive counterparts and thus challenges the defense methods tailored to resisting additive attacks. Moreover, it can be generalized to not only Lp-norm attacks with a new adversary constraint called ratio bound, but also different types of physically realizable attacks. Experimental results show that the model adversarially trained against additive attack is less robust to MultAV. read more

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here