Multi-Activation Hidden Units for Neural Networks with Random Weights

6 Sep 2020  ·  Ajay M. Patrikar ·

Single layer feedforward networks with random weights are successful in a variety of classification and regression problems. These networks are known for their non-iterative and fast training algorithms. A major drawback of these networks is that they require a large number of hidden units. In this paper, we propose the use of multi-activation hidden units. Such units increase the number of tunable parameters and enable formation of complex decision surfaces, without increasing the number of hidden units. We experimentally show that multi-activation hidden units can be used either to improve the classification accuracy, or to reduce computations.

PDF Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here