Multi-Agent Distributed Lifelong Learning for Collective Knowledge Acquisition

15 Sep 2017  ·  Mohammad Rostami, Soheil Kolouri, Kyungnam Kim, Eric Eaton ·

Lifelong machine learning methods acquire knowledge over a series of consecutive tasks, continually building upon their experience. Current lifelong learning algorithms rely upon a single learning agent that has centralized access to all data. In this paper, we extend the idea of lifelong learning from a single agent to a network of multiple agents that collectively learn a series of tasks. Each agent faces some (potentially unique) set of tasks; the key idea is that knowledge learned from these tasks may benefit other agents trying to learn different (but related) tasks. Our Collective Lifelong Learning Algorithm (CoLLA) provides an efficient way for a network of agents to share their learned knowledge in a distributed and decentralized manner, while preserving the privacy of the locally observed data. Note that a decentralized scheme is a subclass of distributed algorithms where a central server does not exist and in addition to data, computations are also distributed among the agents. We provide theoretical guarantees for robust performance of the algorithm and empirically demonstrate that CoLLA outperforms existing approaches for distributed multi-task learning on a variety of data sets.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here