Multi-body Non-rigid Structure-from-Motion

15 Jul 2016  ·  Suryansh Kumar, Yuchao Dai, Hongdong Li ·

Conventional structure-from-motion (SFM) research is primarily concerned with the 3D reconstruction of a single, rigidly moving object seen by a static camera, or a static and rigid scene observed by a moving camera --in both cases there are only one relative rigid motion involved. Recent progress have extended SFM to the areas of {multi-body SFM} (where there are {multiple rigid} relative motions in the scene), as well as {non-rigid SFM} (where there is a single non-rigid, deformable object or scene). Along this line of thinking, there is apparently a missing gap of "multi-body non-rigid SFM", in which the task would be to jointly reconstruct and segment multiple 3D structures of the multiple, non-rigid objects or deformable scenes from images. Such a multi-body non-rigid scenario is common in reality (e.g. two persons shaking hands, multi-person social event), and how to solve it represents a natural {next-step} in SFM research. By leveraging recent results of subspace clustering, this paper proposes, for the first time, an effective framework for multi-body NRSFM, which simultaneously reconstructs and segments each 3D trajectory into their respective low-dimensional subspace. Under our formulation, 3D trajectories for each non-rigid structure can be well approximated with a sparse affine combination of other 3D trajectories from the same structure (self-expressiveness). We solve the resultant optimization with the alternating direction method of multipliers (ADMM). We demonstrate the efficacy of the proposed framework through extensive experiments on both synthetic and real data sequences. Our method clearly outperforms other alternative methods, such as first clustering the 2D feature tracks to groups and then doing non-rigid reconstruction in each group or first conducting 3D reconstruction by using single subspace assumption and then clustering the 3D trajectories into groups.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here