Multi-Instance Visual-Semantic Embedding

22 Dec 2015  ·  Zhou Ren, Hailin Jin, Zhe Lin, Chen Fang, Alan Yuille ·

Visual-semantic embedding models have been recently proposed and shown to be effective for image classification and zero-shot learning, by mapping images into a continuous semantic label space. Although several approaches have been proposed for single-label embedding tasks, handling images with multiple labels (which is a more general setting) still remains an open problem, mainly due to the complex underlying corresponding relationship between image and its labels. In this work, we present Multi-Instance visual-semantic Embedding model (MIE) for embedding images associated with either single or multiple labels. Our model discovers and maps semantically-meaningful image subregions to their corresponding labels. And we demonstrate the superiority of our method over the state-of-the-art on two tasks, including multi-label image annotation and zero-shot learning.

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here