Multi-label ensemble based on variable pairwise constraint projection

8 Mar 2014  ·  Ping Li, Hong Li, Min Wu ·

Multi-label classification has attracted an increasing amount of attention in recent years. To this end, many algorithms have been developed to classify multi-label data in an effective manner. However, they usually do not consider the pairwise relations indicated by sample labels, which actually play important roles in multi-label classification. Inspired by this, we naturally extend the traditional pairwise constraints to the multi-label scenario via a flexible thresholding scheme. Moreover, to improve the generalization ability of the classifier, we adopt a boosting-like strategy to construct a multi-label ensemble from a group of base classifiers. To achieve these goals, this paper presents a novel multi-label classification framework named Variable Pairwise Constraint projection for Multi-label Ensemble (VPCME). Specifically, we take advantage of the variable pairwise constraint projection to learn a lower-dimensional data representation, which preserves the correlations between samples and labels. Thereafter, the base classifiers are trained in the new data space. For the boosting-like strategy, we employ both the variable pairwise constraints and the bootstrap steps to diversify the base classifiers. Empirical studies have shown the superiority of the proposed method in comparison with other approaches.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here