Multi-Label Transfer Learning for Multi-Relational Semantic Similarity

SEMEVAL 2019  ·  Li Zhang, Steven R. Wilson, Rada Mihalcea ·

Multi-relational semantic similarity datasets define the semantic relations between two short texts in multiple ways, e.g., similarity, relatedness, and so on. Yet, all the systems to date designed to capture such relations target one relation at a time... We propose a multi-label transfer learning approach based on LSTM to make predictions for several relations simultaneously and aggregate the losses to update the parameters. This multi-label regression approach jointly learns the information provided by the multiple relations, rather than treating them as separate tasks. Not only does this approach outperform the single-task approach and the traditional multi-task learning approach, but it also achieves state-of-the-art performance on all but one relation of the Human Activity Phrase dataset. read more

PDF Abstract SEMEVAL 2019 PDF SEMEVAL 2019 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods